首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3721篇
  免费   612篇
  国内免费   608篇
测绘学   172篇
大气科学   1053篇
地球物理   926篇
地质学   792篇
海洋学   339篇
天文学   940篇
综合类   157篇
自然地理   562篇
  2024年   6篇
  2023年   34篇
  2022年   69篇
  2021年   117篇
  2020年   99篇
  2019年   91篇
  2018年   103篇
  2017年   119篇
  2016年   117篇
  2015年   162篇
  2014年   173篇
  2013年   255篇
  2012年   176篇
  2011年   196篇
  2010年   160篇
  2009年   263篇
  2008年   273篇
  2007年   299篇
  2006年   263篇
  2005年   245篇
  2004年   209篇
  2003年   192篇
  2002年   171篇
  2001年   160篇
  2000年   118篇
  1999年   130篇
  1998年   122篇
  1997年   103篇
  1996年   80篇
  1995年   81篇
  1994年   86篇
  1993年   56篇
  1992年   40篇
  1991年   47篇
  1990年   25篇
  1989年   21篇
  1988年   26篇
  1987年   11篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   8篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1973年   2篇
  1954年   1篇
排序方式: 共有4941条查询结果,搜索用时 15 毫秒
151.
Groundwater storage, drainage, and interbasin water exchange are common hydrological processes but often difficult to quantify due to a lack of local observations. We present a study of three volcanic mountainous watersheds located in south‐central Chile (~36.9 ° S) in the Chillán volcanic complex (Chillán, Renegado, and Diguillín river basins). These are neighboring basins that are similar with respect to the metrics normally available for characterization everywhere (e.g., precipitation, temperature, and land cover). In a hydrological sense, similar (proportional) behavior would be expected if these catchments would be characterized with this general information. However, these watersheds show dissimilar behavior when analyzed in detail. The surface water balance does not fit for any of these watersheds individually; however, the water balance of the whole system can be explained by likely interbasin water exchanges. The Renegado river basin has an average annual runoff per unit of area on the order of 60–65% less than those of the Diguillín and Chillán rivers, which is contradictory to the hydrological similarity among the basins. To understand the main processes that control streamflow generation, two analyses were performed: (a) basin metrics (land cover, geologic, topographic, and climatological maps) and hydro‐meteorological data analyses and (b) a water balance model approach. The analyses contribute to a plausible explanation for the hydrogeological processes in the system. The soils, topography, and geology of the Chillán–Renegado–Diguillín system favor the infiltration and groundwater movements from the Renegado river basin, mainly to the neighboring Diguillín basin. The interbasin water exchanges affect hydrological similarity and explain the differences observed in the hydrological processes of these three apparently similar volcanic basins. The results highlight the complexity of hydrological processes in volcanic mountainous systems and suggest that a simple watershed classification approach based on widely available data is insufficient. Simple local analyses such as specific flow analysis with a review of the geology and morphology can contribute to a better understanding of the hydrology of volcanic mountainous areas.  相似文献   
152.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
153.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
154.
钢管脐带缆包含多种螺旋缠绕的功能单元,其在外力载荷下会发生相对运动,而且钢管的刚度较大对扭转平衡有重要影响,因此,相对于普通电缆,钢管脐带缆在扭转平衡设计时更加困难。根据扭转平衡理论公式,采用控制变量法,以第二层铠装钢丝的绞合角度为变量进行扭转平衡设计。首先建立脐带缆缆芯有限元模型,对其施加拉伸载荷,结果显示缆芯出现了扭转,这证明不能将脐带缆缆芯视为一实心圆柱。其次建立不同绞合角度的脐带缆有限元模型,设置各功能单元的材料属性和摩擦系数,分析模型在拉伸载荷下的扭转角度,并将相同拉伸载荷下的扭转角度拟合为直线,从而得到钢管脐带缆在扭转平衡状态时的最优绞合角度。最后,采用试验方法对实物钢管脐带缆进行扭转平衡测试,测试结果显示在拉伸载荷下脐带缆单位长度扭转角度十分微小,这表明缆是扭转平衡的。因此验证了使用的有限元方法在钢管脐带缆扭转平衡设计中的有效性。  相似文献   
155.
This research demonstrates the spatiotemporal variations of albedo on nine glaciers in western China during 2000–2011, by the albedo derived from two types of datasets: Landsat TM/ETM + images and MOD10A1 product. Then, the influence factors of glacier albedo and its relationship with glacier mass balance are also analyzed by the correlation approach, which is frequently used in geostatistics. The paper finds that there are different spatiotemporal variations over the glaciers in western China: (1) For a single glacier, the albedo varies gently with altitude on its tongue and increases fast in the middle part, while in the accumulation zones, the albedo value appears in the form of fluctuation. This could provide a quantitative method to retrieve the snowline by determining the threshold albedo value of snowpack and bare ice. (2) For the glaciers in western China, the albedo decreases with distance to the center of Tibetan Plateau (TP). This may relate to the elevation of glacier, for the speed of glacier retreat highly depends on air temperature. (3) In the summer period, albedo on most glaciers declines over the last 12 years, and it decreases much faster in southeastern TP than other regions, for which air temperature overwhelms the black carbon concentration. In addition, the trend of glacier albedo in summer is greatly correlated with that of measured glacier mass balance, which implies that the long‐term albedo datasets by remote sensing technology could be used to monitor and predict the change of glacier mass balance in the future. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
156.
Tritium concentrations were measured in a survey of 24 lakes, 15 wetlands, and 133 groundwaters in the oil sands region of northeastern Alberta and compared with both recent precipitation and precipitation sampled during the 1960s tritium peak caused by atmospheric thermonuclear weapons testing. Water samples from lakes included a group of 14 thaw lakes that had higher runoff attributed to melting of permafrost in peat plateaus within their watersheds. While tritium in all lakes was found to be intermediate between recent and 1960s concentrations, the thaw lakes were found to be significantly enriched in tritium compared with other lakes, as were unfrozen wetlands characterized by a thick sequence of low‐hydraulic conductivity peat. The results provide further evidence of different water sources to the thaw lakes and may indicate that melting of modern permafrost in part formed since the 1950s is occurring in these systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
157.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
158.
为解决森林分布不连续流域森林水源涵养功能及其多时间尺度特征的定量评价问题,根据分布式水文模型(SWAT)的特点,提出了反映森林斑块空间分布的水文响应单元划分方法,以及基于水量平衡法的森林不连续分布流域森林水源涵养量计算公式。以东南沿海的晋江流域为例,构建了2006年土地利用条件下的日时间步长SWAT模型,统计分析了2002—2010年降水条件下森林水源涵养量的时空变化规律。结果表明:① 构建的晋江流域SWAT模型精度较高,面积阈值为零生成的水文响应单元比较准确地反映流域森林斑块分布,提出的森林水源涵养量计算公式适用于森林空间分布不连续流域森林水源涵养量的多时间尺度分析,为流域森林水源涵养功能评价提供了一个新的方法。② 晋江流域森林水源年涵养量271.41~565.25 mm;月涵养量-29.15~154.59 mm;日尺度的极端降水期皆为正值,极端枯水期都为负值。表明年际之间不存在森林水源涵养的蓄丰补枯调节作用,但在年内的部分月份得到体现,而日尺度的森林蓄丰补枯功能充分发挥。从而揭示了不同时间尺度森林水源涵养量及其蓄丰补枯功能的差异。  相似文献   
159.
The Budyko framework characterizes landscape water cycles as a function of climate. We used this framework to identify regions with contrasting hydroclimatic change during the past 50 years in Sweden. This analysis revealed three distinct regions: the mountains, the forests, and the areas with agriculture. Each region responded markedly different to recent climate and anthropogenic changes, and within each region, we identified the most sensitive subregions. These results highlight the need for regional differentiation in climate change adaptation strategies to protect vulnerable ecosystems and freshwater resources. Further, the Budyko curve moved systematically towards its water and energy limits, indicating augmentation of the water cycle driven by changing vegetation, climate and human interactions. This finding challenges the steady state assumption of the Budyko curve and therefore its ability to predict future water cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
160.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号